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For decades, the main ways to study the effect of one part of the nervous system upon another have been
either to stimulate or lesion the first part and investigate the outcome in the second. This article describes a
fundamentally different approach to identifying causal connectivity in neuroscience: a focus on the
predictability of ongoing activity in one part from that in another. This approach was made possible by a new
method that comes from the pioneering work of Wiener (1956) and Granger (1969). The Wiener–Granger
method, unlike stimulation and ablation, does not require direct intervention in the nervous system. Rather,
it relies on the estimation of causal statistical influences between simultaneously recorded neural time series
data, either in the absence of identifiable behavioral events or in the context of task performance. Causality in
the Wiener–Granger sense is based on the statistical predictability of one time series that derives from
knowledge of one or more others. This article defines Wiener–Granger Causality, discusses its merits and
limitations in neuroscience, and outlines recent developments in its implementation.
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Introduction

For most of its history, neuroscience has primarily been concerned
with examining the physiological correlates of experimentally
delivered stimuli and overt behavioral responses. More recently,
there has been growing interest in studying the effect that one part of
the nervous system has on another, either in the absence of
identifiable behavioral events or in the context of task performance.
Such effects are typically examined by stimulating or lesioning the
first part and investigating the outcome in the second. In peripheral
and spinal pathways, the interventional techniques of stimulation and
ablation have proven to be powerful methods for inferring causal
influences from one neuron or neuronal population to another. For the
study of causal relations within the brain, interventional techniques
also have utility, although that utility is diminished by the high levels
of convergence and divergence in brain pathways, as well as the
highly nested reciprocity of projections. This article deals with a
different approach to the problem of causal influence in the brain,
called Time Series Inference (TSI). This approach, although relatively
recent in neuroscience, is showing promise as a valuable adjunct to
more traditional interventional approaches.

TSI, unlike stimulation or ablation, does not require intervention in
the nervous system. It is based on temporal relations existing between
time series recordings of neural activity, which may be obtained
noninvasively as electroencephalographic (EEG), magnetoencephalo-
graphic (MEG), or functional Magnetic Resonance (fMRI) data. Of
course, the time series may also be obtained from invasive single-unit,
multi-unit, local field potential, or electrocorticographic recordings.
TSI depends on the statistical predictability of one time series by
another time series. If the two time series represent neural activity
from different neurons or neuronal populations, then inference about
causal relations between those neurons or neuronal populations is
possible. Another advantage of TSI methods is that they naturally
accommodate stochastic processes, and thus are well suited to the
ubiquitous variability that is found in neural time series data.
Furthermore, under proper conditions, TSI methods can be effectively
used to relate neural activity to cognitive function.

In this article, we will describe Wiener–Granger Causality (WGC)
as the type of TSI most commonly employed in neuroscientific studies.
TSI methods, in one form or another, are well established and widely
used in many different fields of study. The use of TSI methods in
neuroscience is relatively new, but already has appeared in different
implementations. For example, the popular Dynamic Causal Modeling
(DCM) (Friston et al., 2003) approach is based on TSI, although this
fact is not commonly appreciated. We will focus here on WGC
techniques, which, as described below, are based on a relatively small
set of straightforward assumptions. DCM, which wewill not discuss at
length, involves TSI with additional and more complicated assump-
tions (see accompanying articles in this issue).

In summary, our purpose here is to detail the implementation of
WGC via AutoRegressive (AR) modelling, discuss the assumptions
required to applyWGC to neural time series data, describe some of the
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limitations of its use, and provide some examples of applications to
neural time series data. Finally, we will describe some potentially
important extensions of currently employed techniques.

Wiener–Granger Causality

Time-domain WGC

The problem of defining ‘causality’ is non-trivial for complex
systems, where, unlike simple systems observed in the every-day
world, an intuitive understanding of cause and effect is lacking. In
1956 NorbertWiener introduced the notion that one variable (or time
series) could be called ‘causal’ to another if the ability to predict the
second variable is improved by incorporating information about the
first (Wiener, 1956). Wiener however lacked a practical implemen-
tation of his idea. Such an implementation was introduced in 1969 by
the econometrician Clive Granger (1969) in the context of linear
autoregressive models of stochastic processes.

The basic idea of Wiener–Granger Causality (WGC), or G-causality,
is straightforward. Suppose that we have two variables X, and Y, and
we try to predict Xt+1 using only past terms of X. We also try to
predictXt+1 using past terms of both X and Y. If the second prediction
is significantly more successful, then the past of Y contains
information useful for predicting Xt+1 that is not in the past of X. In
this case, Y is said to G-cause X. Note that these variables can be scalar
time series, for which we use normal type (e.g., X) or vector time
series, for which we use bold type (e.g., X).

Because the values of a variable at one time are predicted by values
of other variables at earlier times, it is often said thatWGC depends on
‘temporal precedence’. However, it is not sufficient simply that events
in the other variables temporally precede similar events in the first
variable. For WGC to be significant, statistically significant predict-
ability must be established. In other words, non-zero values for WGC
can usually be obtained from any set of time series, but these values
are meaningless unless it is determined that they are statistically
significant.

Assuming that variables X and Y are stochastic and Wide-Sense
Stationary (WSS, meaning that they have constant means and
variances), WGC can be easily implemented using linear vector AR
models,1 though the concept is not tied to this implementation. Let us
first define Xt−1

(m) =Xt−1 ⊕…⊕Xt−m, where Xt− i is a column vector
consisting of the values of elements of X at time t−i, m is a fixed
number of lagged observations, and the symbol ⊕ denotes concate-
nation of column vectors. Now consider the pair of (restricted and
unrestricted) regression models:

Xt = A⋅X mð Þ
t−1 + εt

Xt = A′⋅ X
mð Þ
t−1⊕Y

mð Þ
t−1

� �
= ε′t

ð2:1Þ

where m is now referred to as the ‘model order’, A and A′ contain
the model coefficients, and εt and εt′ are the residuals (also called
‘prediction errors’ or ‘innovations’) of the models. Note that the
temporal duration of X⊕Y is the same as that of X and Y individually,
andwe assume thatX andY are both zero-mean. In practice, A (and A′)
and hence εt (and εt′) can be derived by standard linear autoregression
methods, including ordinary least squares and multivariate Yule–
Walker equations (Kay, 1988).

In this framework, if the variability of the residual (εt′) of the
unrestricted model is significantly less than the variability of the
residual (εt) of the restricted model, then there is an improvement in
1 Since X and Ymay be scalar as well as vector time series, we use the inclusive term
‘AR’ (AutoRegressive) to refer to models in which the variables may be of either type.
the prediction ofX due to Y. Then, following Geweke (1984), for scalar
X, the WGC from Y to X can be defined as:

FY→X = ln
var εtð Þ
var ε′tð Þ : ð2:2Þ

Eq. (2.2) has several implications. First, for scalar X and Y it is
possible both for Y to G-cause X and for X to G-cause Y, a feedback
stochastic process. This relation generalizes to vector X and Y (see
below, and Geweke (1984)). Second, F can never be negative. Third,
statistical significance can be determined via the F-statistic (Greene,
2002):

F =

RSSr−RSSur
m

RSSur
T−2m−1

ð2:3Þ

where RSSr and RSSur are the Residual Sum of Squares of the restricted
(∑T

t = m + 1ε
2
t ) and unrestricted (∑T

t = m + 1ε′
2
t ) models, respective-

ly, and T is the total number of observations used to estimate
the unrestricted model. The F-statistic approximately follows an F
distributionwith degrees of freedomm and (T−2m−1). A significant
F-statistic2 may be reasonably interpreted as evidence that the
unrestricted model provides a better prediction than does the
restricted model, and in that case Y is said to G-cause X.

Geweke (1984) showed that a conditional WGC may be calculated
by including in Eq. (2.1) another WSS variable Z:

Xt = A⋅ X
ðmÞ
t−1⊕Z

ðmÞ
t−1

� �
+ εt

Xt = A′⋅ X
ðmÞ
t−1⊕Y

ðmÞ
t−1⊕Z

ðmÞ
t−1

� �
+ ε′t

ð2:4Þ

where vectors X, Y, and Z represent zero-mean stationary stochastic
processes. Then, the WGC from Y to scalar X, conditional on Z, is
defined as:

FY→X jZ = ln
var εtð Þ
var ε′tð Þ : ð2:5Þ

Geweke made several other important contributions to the WGC
concept (Geweke, 1982; Geweke, 1984). First, he showed that the
total interdependence between two variables could be decomposed in
terms of their reciprocal causality plus an ‘instantaneous feedback’
term. Second, he showed that under fairly general conditionsF can be
decomposed additively by frequency (see SpectralWGC section). Last,
and less appreciated, he pointed out that it is possible to calculate
WGCs amongmultivariate sets of variables, represented as vector time
series. Considering again Eq. (2.4), there is no problem in allowing Y
and Z to be vector time series: the residuals εt will still be scalar and
Eq. (2.5) can be used without modification. However, if the ‘predictee’
variable X is a vector, then the residuals will also be vectors and
Eq. (2.5) cannot be used directly. A natural approach suggested by
Geweke, and developed further by Barrett et al. (in press), is to replace
var(εt) with the determinant of the covariance matrix of the residuals
(the generalized variance), though see Ladroue et al. (2009) for an
alternative.

Computation of WGC requires specification of model order m. Too
lowm can lead to a poor representation of the data, whereas too high
m can lead to problems of model estimation. A principled means
to specify m is to minimize a criterion that balances the variance
accounted for, against the number of coefficients to be estimated. Two
2 Statistical significance can also be calculated using the χ2 statistic, which is
monotonically related to the F-statistic (Geweke, 1982). The maximum likelihood
estimator F̂Y→X jZ will have a χ2-distribution under the null hypothesis FY→X jZ = 0,
and a non-central χ2-distribution under the alternative hypothesis FY→X jZ N 0
(Granger, 1969; Geweke, 1982).
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3 A unit root occurs when a root of the characteristic equation for an AR model
equals one.
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suitable criteria are the Akaike information criterion (Akaike, 1974)
and the Bayesian information criterion (Schwartz, 1978).

Spectral WGC

As mentioned above, an important advance in developing WGC
methodology was to provide a spectral (frequency domain) decom-
position ofWGC (Geweke, 1982; Geweke, 1984). In Geweke's spectral
formulation, the total time-domain WGC is equal to the sum of
spectral WGC components over all frequencies from zero to the
Nyquist frequency. The spectralWGC at a given frequencyω, for scalar
X and Y, is given by:

F Y→X ωð Þ = ln
SXX ωð Þ

H̃XX ωð Þvar ε′tð ÞH̃XX* ωð Þ
ð2:6Þ

where SXX(ω) is the autospectrum of Xt, H̃XX(ω) is the (X, X) element
of the normalized form of the transfer matrix H̃(ω) (Geweke, 1982),
H̃XX* (ω) is the complex conjugate of H̃XX(ω), and ω denotes frequency.
It should be noted that H̃(ω) is the inverse of the normalized spectral
coefficient matrix Ã(ω), which in turn is derived as the Fourier
transform of the time-domain coefficient matrix jointly representing
the unrestrictedmodels for X and Y (see Ding et al. (2006) for details).
The form of Eq. (2.6) provides an important intuition: the causal
influence depends on the relative sizes of the total power (SXX(ω))
and the intrinsic power (HXX(ω)var(εt′)HXX* (ω)). Since the total power
is the sum of the intrinsic and causal powers, the spectral WGC is zero
when the causal power is zero, i.e. the intrinsic power equals the total
power, and increases as the causal power increases (Ding et al., 2006).
A conditional form of spectral WGC has been described by Chen et al.
(2006).

Spectral WGC is important in neurophysiological studies because
causal influences between neuronal populations often depend on
oscillatory synchrony. In such cases, spectral WGC, like spectral
coherence, is band-limited so that both the coherence and WGC
spectra consist of band-limited peaks (Brovelli et al., 2004). It is an
empirical question whether a peak in the coherence spectrum has
corresponding peaks in the directionalWGC spectra, and, if so, in what
proportion. Nonetheless, because the coherence is directly related to
the total interdependence (Ding et al., 2006), and the total
interdependence is the sum of three measures (the two directional
WGCs and the ‘instantaneous feedback’ WGC), coherence peaks are
expected to have corresponding peaks in one or more of these WGC
spectra.

Several other measures related to spectral WGC have been
described. The Directed Transfer Function (DTF) is a frequency-
domain measure of causal influence based on the elements of the
transfer matrix H(ω) of a multivariate AR model. The DTF has both
normalized (Kaminski and Blinowska, 1991) and non-normalized
(Kaminski, 2007) forms. Another measure, called the Partial Directed
Coherence (PDC) (Baccala and Sameshima, 2001), is constructed from
elements of A(ω), the Fourier-transformed matrices of the coefficient
matrices of a multivariate AR model. The PDC is normalized, but in a
different way from the normalized DTF: the PDC represents the
outflow from a variable j to i relative to all outflows from j, whereas
the normalized DTF represents the inflow to i from j relative to all
inflows to i. The comparison of WGC, DTF, and PDC is discussed in
Eichler (2006) and Schelter et al. (2005).

Assumptions and challenges

In this section we identify some key challenges for WGC analysis,
both in general and with regard to the commonly employed
neuroimaging methods of fMRI, EEG, and MEG. In each case we
outline recent work that may address, at least in part, these
challenges.
Stationarity and data length

Themeasurement ofWGC from neural time series data depends on
estimating AR models of stochastic processes. It is usually required
that the stochastic process be WSS so that model estimation is
tractable. AR model estimation on nonstationary data is known to
produce spurious regression results (Granger and Newbold, 1974). In
practice, WSS can be assessed by verifying that the autocorrelation
function is sharply declining, by ensuring that the process does not
contain a ‘unit root’ (Hamilton, 1994),3 and/or by applying the so-
called KPSS test on the null hypothesis of stationarity (Kwiatkowski
et al., 1992). For data that are nonstationary, a widely used approach is
to difference the data (i.e., Xt′=Xt−Xt−1), repeatedly if necessary. A
problem with the use of differencing is that it may easily change the
interpretation of any resulting WGCs, especially in the spectral
domain where differencing acts as a high-pass filter. Alternatively,
nonstationary data could indicate that causal relations are varying
over time. In this case, it may make sense to use methods which are
sensitive to time-varying WGC. One simple approach is to analyze
shorter time-windows each of which may be locally stationary (Ding
et al., 2000). More complex but potentially more widely applicable
alternatives include spectral factorization of wavelet transformations
(Dhamala et al., 2008), and adaptive recursive least-squares model-
ling (Hesse et al., 2003).

WGC analysis depends on having a total number of observations
(time points, T) that is adequate to estimate the ARmodel coefficients.
The observations may come from a single period of stationary time
series if that period is of sufficient duration to provide the requisite
number of observations. In this way analysis of resting states is
possible if sufficiently long stationary rest periods are available. By
assuming that the neural time series recorded in a stationary rest
period are generated by an underlying stationary stochastic physio-
logical process, an appropriately estimated AR model may be taken to
represent that process. Alternatively, an AR model can be estimated
using observations that come from multiple repetitions of relatively
short periods (trials) if it can be assumed that each period is an
independent realization of a single stationary stochastic process (Ding
et al., 2000).

Following the latter approach, WGC has been measured from
neural time series recorded during brief intervals of a cognitive task
by using repeated task trials as observations for model coefficient
estimation. Brovelli et al. (2004), for example, applied WGC analysis
to brief intervals of local field potential time series simultaneously
recorded frommultiple somatosensory andmotor cortical locations in
monkeys maintaining hand pressure as part of a visual discrimination
task. Oscillatory neural activity in somatosensory and motor cortices
was synchronized in the beta (14–30 Hz) frequency range during
hand pressure. WGC analysis revealed beta-frequency causal influ-
ences directed from somatosensory to motor cortex that were
significantly stronger than in the reverse direction, suggesting that
sensory andmotor cortices are dynamically bound in a functional loop
during maintenance of steady motor outflow.
Linearity and parametric estimation

In its standard application, WGC captures only linear features of
time series data, whereas many target systems are known to be
nonlinear. However, nonlinear systems often have extensive linear
regimes, and, in many neuroscience applications, especially those
dealing with large-scale interactions, linear approximations are found
to work extremely well (McIntosh and Gonzalez-Lima, 1994). More
generally, WGC is not tied to linear AR models (Freiwald et al., 1999;
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Marinazzo et al., 2010). Specific implementations of nonlinear WGC
include a kernel-based method (Ancona et al., 2004; Marinazzo et al.,
2008) which is suggested to be well suited to short and noisy time
series. A recent result has indicated that, for Gaussian variables, there
is nothing additional to account for by nonlinear extensions to WGC
because a stationary Gaussian AR process is necessarily linear (Barnett
et al., 2009). Nonlinear TSI methods outside the WGC framework are
discussed briefly in the Relation to transfer entropy and other
nonlinear methods section.

As previously noted, estimation of WGC using parametric AR
models requires choosing a model order m that balances variance
accounted for against model complexity. A problem with this trade-
off is that resulting AR models can sometimes fail to capture complex
spectral features of data that require higher-order AR models (Mitra
and Pesaran, 1999). An alternative, nonparametric approach has
recently been described (Dhamala et al., 2008) in which pairwise and
conditional WGC are computed directly from Fourier and wavelet
transformations, bypassing the step of (linear) AR model estimation.
This nonparametric method is useful also because it provides a
measure of time-varying WGC (if wavelets are used), and because it
supplies a natural WGC analysis of point-process data, such as spike
trains, based on their Fourier transforms (Nedungadi et al., 2009).

Latent variables

All brain connectivity models involve the step of ‘structural model
selection’, in which a relevant set of neuronal variables is selected for
analysis (Roebroeck et al., 2009). In practice, this step is likely to
exclude some relevant variables, which, for all TSI-based analysis
methods, can lead to the detection of apparent causal interactions that
are actually spurious (Pearl, 1999).

One recent response to this challenge has been what is called
‘partial G-causality’ (Guo et al., 2008a). The idea is that latent variables
may give rise to detectable correlations among the residuals of the
corresponding vector AR model (i.e., cross-correlations among the εt
of Eq. (2.4)). By analogy with the concept of partial correlation
(Kendall and Stuart, 1979), an additional term based on these
correlations can mitigate the confounding influence of the latent
variables. Consider that, in addition to Eq. (2.4), the regressions of the
conditional variable Zt are:

Zt = B⋅ X
mð Þ
t−1⊕Z

mð Þ
t−1

� �
+ ηt

Zt = B′⋅ X
mð Þ
t−1⊕Y

mð Þ
t−1⊕Z

mð Þ
t−1

� �
+ η′t

ð3:1Þ

so that the roles of the ‘predictee’ and conditioning variables are
reversed. Then (for scalar X) the partial G-causality of Y to X given Z is
defined as:

F P
Y→X jZ = ln

∑ εt jηtð Þ
∑ ε′t jη′tð Þ ð3:2Þ

where∑(ε|η) is defined as cov(ε, ε)−cov(ε, η) cov(η, η)−1 cov(ε, η)⊤,
the ‘partial covariance’ (Barnett et al., 2009), and the superscript ⊤

denotes matrix transpose.
Importantly, whereas partial correlation removes the influence of

known exogenous variables from a fundamentally bivariate measure
(correlation), F P attempts to control for the influence of unknown
variables on a multivariate measure (WGC) indirectly via their
influence on εt. Therefore,F P can only fully control for latent variables
in the unlikely case that they have equivalent effects on all measured
variables. However, numerical investigations show that even when
this condition is not met, F P nonetheless can deliver substantially
improved results as compared to F (Guo et al., 2008a). It is also
noteworthy that F P can also be decomposed additively by frequency
(Guo et al., 2008b).
fMRI

The application ofWGC to fMRI is enormously promising given the
dominance of fMRI within neuroimaging (Roebroeck et al., 2005).
However, fMRI data is subject to several potential sources of artifact.
In particular, variability in the shape and latency of Hemodynamic
Response Functions (HRFs) in different brain regions and different
subjects (Aguirre et al., 1998) may lead to mis-attribution of the
direction of causal influence by WGC in some circumstances (David
et al., 2008). The implications of this problem, especially with regard
to the pros and cons of WGC versus DCM, are comprehensively
covered by other authors in this issue. Here we emphasize four
points. First, although the sources of inter-regional and inter-subject
variability in the fMRI are only poorly understood, it is clear that any
attribution of this variability entirely to HRF variability is erroneous.
Recent simulation results indicate that WGC is surprisingly resilient
to hemodynamic variability within normal physiological ranges
(Deshpande et al., 2011-this issue). Second, the comparison of WGC
values from fMRI Blood Oxygen Level Dependent (BOLD) time series
in different experimental conditions may be robust to HRF variation,
even if characterization of the underlying neural processes per se
(Roebroeck et al., 2005) is not. This is because, since HRFs are not
expected to vary between conditions, it is unlikely that HRF variation
across brain regions affects the comparison of conditions. Third,
adequate estimates of HRF shape and latency can be used to
deconvolve the fMRI BOLD signal to recover measures of the
underlying neural processes (David et al., 2008; Chang et al., 2008;
Vakorin et al., 2007), which can then be analyzed using WGC to
determine causal influences among neuronal populations. Fourth,
knowledge of the HRFs is not necessary for WGC analysis to uncover
causal relations among event-related BOLD time series (Tang et al.,
2009).

WGC analysis of fMRI BOLD time series may serve as a useful
complement to ablation and/or stimulation studies for characterizing
the function of neural systems. For example, Bressler et al. (2008)
found top-down directed influences from high-level frontal and
parietal regions to visual occipital cortex in visual spatial attention
that are consistent with the results of transcranial magnetic
stimulation of the same high-level regions (Ruff et al., 2009). In
another study, Sridharan et al. (2008) used WGC analysis of fMRI
BOLD time series to identify the right fronto-insular cortex as a critical
brain region that drives changes in the brain's central-executive and
default-mode networks.

Other issues that may affect the application of WGC specifically to
fMRI include: (i) the large number of possible variables (voxels);
(ii) the likelihood of missing rapid causal influences because of the
slow dynamics of the BOLD signal; and (iii) the necessity of finding
appropriate statistical methods for group-level analyses. The first
issue can be addressed in several ways, for example by using
dimensionality reduction techniques such as principal components
analysis prior toWGC (Zhou et al., 2009) or by using sparse regression
techniques in combination with pruning of ‘unlikely’ connections
(Valdes-Sosa et al., 2005). Furthermore, using Geweke's formulation
of WGC for multivariate sets (see above), it is possible for causal
influences to be measured between sets of simultaneous time series
drawn from multiple single voxels, or principal components, in
individual brain regions (Barrett et al., in press).

Although the second issue is more difficult to deal with, modelling
studies have shown that fast neural exchanges can still be identified
via a combination of short TR times, and by carrying out causal
inference, not on the individual FX→Y and F Y→X , but rather on their
difference: FX→Y−F Y→X (Roebroeck et al., 2005). This strategy
controls for the loss of information that arises from the low-pass
filtering introduced by the HRF, but at the expense of missing
reciprocal causal connections. One caveat is that it is difficult to
measure the conditional WGC in this case.
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4 In this regard, analysis based on partial WGC (F P) must always be considered to
be incomplete since it must always be performed against a background of unmeasured
environmental variables. On the other hand, it may be argued that the causal
connectivity relations among a set of measured variables are properly given by the
conditional WGC (F).
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As for the third issue, group-level statistical methods are often
needed in fMRI time series analysis. In the case ofWGCmapping at the
voxel level, group-level statistical methods are used to ascertain the
threshold of significance. When WGC is measured at the brain-region
level based on voxel-level statistical distributions (Bressler et al.,
2008), the group-level statistical significance threshold may be
obtained directly from the distribution of the F-statistic defined in
Eq. (2.3).

EEG and MEG

The application of WGC analysis to MEG or EEG data can be
extremely informative due to the submillisecond time resolution
offered by these imaging methods. The demonstrated usefulness of
spectral WGC for discriminating causal influences at different
frequencies in MEG and EEG data (Astolfi et al., 2007; Gow et al.,
2008), as in local field potential data (Brovelli et al., 2004; Bressler
et al., 2007), is a particular benefit of WGC analysis that is not shared
by some other TSI-based analysis methods. Relating causal connec-
tivity in either the time or frequency domains to cognitive function is
facilitated if WGC can be applied to source-localized MEG or EEG
signals. However, both MEG and EEG suffer from uncertainties in the
transformation from sensor space to source space. Although source
localization methods are continually improving (Pantazis and Leahy,
2006), generally accepted methods are still lacking and the existence
of unique solutions cannot be guaranteed by any method (Koles,
1998).

A further problem in applying WGC analysis to MEG and EEG data
is that it is difficult to ensure that the many preprocessing steps
involved in MEG and EEG data processing (even prior to source
localization) do not introduce causal artifacts by disrupting the fine-
grained timing relations on which WGC analysis depends. For
example, bandpass filtering may cause severe confounds in WGC
analysis by introducing temporal correlations into MEG or EEG time
series (Seth, 2010; Florin et al., 2009).

Discussion

Causal inference in neural systems

Any discussion of causal inference should be prefaced by one
fundamental question: What do we expect from a measure of
causality? One useful perspective is that causal measures in
neuroscience should reflect effective connectivity, namely the directed
influences that neuronal populations in one brain area exert on those
in another (Friston, 1994). As applied to neuroimaging data (e.g., by
way of DCM), effective connectivity analysis aims at identifying, from
recorded neural time series data, the underlying physiological
influences exerted among neuronal populations in different brain
areas. Effective connectivity can be distinguished from functional
connectivity, which is based on correlations at zero-lag or across
multiple time lags (Friston, 1994; Daunizeau et al., 2011-this issue).

One may, however, envisage a different but complementary goal
for a causality measure, namely to reflect directed dynamical
connectivity — causal connectivity — without requiring that the
resulting networks univocally recapitulate the underlying physiolog-
ical processes. A causal connectivity perspective can be justified in
several ways. First, modelling studies have demonstrated that the
same underlying (physical) network structure can give rise to
multiple distinct dynamical connectivity patterns (Seth, 2005, 2008;
Lungarella and Sporns, 2006) depending on how the system interacts
with its environment. Second, in practice it is always infeasible to
measure all relevant variables. Therefore effective connectivity
measures will always be provisional (unless somehow validated by
intervention techniques), whereas descriptions of causal connectivity
stand as valid descriptions of dynamical relations among measured
variables regardless of omitted elements.4 Third, neural dynamics can
modify the underlying neural structural connectivity, for example via
Hebbian processes, implying that dynamical and structural connec-
tivity patterns are engaged in continual interaction and mutual
specification, and therefore that any assumptions by effective
connectivity analysis of invariant underlying physiological influences
may be unrealistic.

Our aim is not to argue against effective connectivity analysis. On
the contrary, descriptions of effective connectivity are greatly to be
desired (Horwitz, 2003). Nevertheless, it may also make sense to
consider the more liberal level of causal connectivity analysis (Seth,
2005, 2008) as shedding useful new light on the general relations
that exist between structural and dynamical levels of description of
complex neural systems.

Exploratory versus confirmatory statistics

WGC is often described as an example of exploratory statistics, in the
sense that it is data-driven, making few, if any, prior assumptions about
causal connectivity (Roebroeck et al., 2009). Exploratory statistics canbe
contrasted with confirmatory statistics, in which a causal model is
specified in advance and data are used to confirm or disconfirm the
plausibility of this model (McIntosh and Gonzalez-Lima, 1994). From
this perspective, DCM is often considered to be an example of
confirmatory statistics (Roebroeck et al., 2009). However, it may be
more productive to think of both WGC and DCM as occupying different
and modifiable positions on a spectrum from ‘purely exploratory’ to
‘purely confirmatory’ methods. WGC analysis is confirmatory in the
sense that it makes a ‘model-based’ assumption that the underlying
data-generating mechanism can be effectively modelled as an AR
process (see Relation to transfer entropy and other nonlinear methods
section below). And recent implementations of DCMmay be considered
to be exploratory since they include a model selection stage in which
different causal models are compared based on their log evidence
(Friston, 2011-this issue). By increasing the range of candidate models
in a DCMapproach, or by introducing priors into the AR equations,WGC
and DCM could be brought even closer together. In the limit, as Friston
(this issue) points out, bothWGC and DCM are based on TSI and can be
subsumed within a single theoretical framework.

In their most common instantiations, DCM and WGC are
distinguished in several important ways with regard to neuroimaging
applications. We remark on three (see Roebroeck et al. (2009) and
commentaries in this issue for a more comprehensive discussion).
First, DCM incorporates an explicit model of the neuronal causes of
observed data whereas WGC derives inferences directly from data
(this being the case even following modality-specific preprocessing
such as hemodynamic deconvolution). Second, unlike WGC, DCM
does not incorporate stochastic processes, though there are recent
extensions of DCM in this direction (Daunizeau et al., 2011-this issue).
Third, whereas DCM is based on Bayesian model inversion, WGC
makes use of a classical frequentist approach in which conclusions are
drawn on the basis of distributions of sampling statistics. More
generally, as noted above in the Causal inference in neural systems
section, DCM aims at identifying effective connectivity whereas WGC
may be more broadly useful for inferring causal connectivity.

Relation to transfer entropy and other nonlinear methods

The concept of transfer entropy (TE) (Schreiber, 2000) is ex-
tremely similar to that of WGC. TE is an information-theoretic
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measure of directed (time-asymmetric) information transfer between
jointly dependent processes. While WGC is framed in terms of
prediction, TE is framed in terms of resolution of uncertainty: The TE
from Y to X is the degree to which Y disambiguates the future of X
beyond the degree to which X already disambiguates its own future. A
possible advantage of TE over WGC is that TE is ‘model agnostic’
inasmuch as it depends only on estimation of multivariate entropies
directly from probability distributions.5 As such, TE may make fewer
assumptionsabout thedata than the standardWGC implementation.On
the other hand, the estimation of TE by state-space partitioning is
problematic, especially in multivariate situations (Kaiser and Schreiber,
2002). Moreover, unlike WGC, the distribution of the sample statistic
is not known, rendering significance testing difficult without recourse
to computationally expensive nonparametric resampling techniques
(Theiler et al., 1992). It has recently been shown that, for Gaussian
variables, WGC and TE are in fact entirely equivalent (Barnett et al.,
2009). By unifying information-theoretic and autoregressive
approaches to causal inference, this result allows insights from one
domain to be translated easily into the other. For example, asmentioned
above, it now appears that under Gaussian assumptions there is nothing
additional for nonlinear WGC to account for.

WGC and TE are both part of a large repertoire of nonlinear TSI
techniques that rely on the concept of reduction of uncertainty in
future states. Although less often employed than WGC, alternatives
within this repertoire may have advantages in particular applications.
For example, Schiff et al. (1996) describe a nonlinear prediction
technique based on time-delayed coordinate embedding, their
emphasis, however, being more on identifying generalized synchrony
than causality per se. A similar approach has been applied to
multichannel EEG, revealing correlated patterns of nonlinear inter-
dependence (Breakspear and Terry, 2002). Lungarella et al. (2007)
provide a useful comparative analysis of some of these techniques,
including WGC and TE.

Resources

Because WGC is conceptually straightforward, it is a relatively
attractivemethodology, and a variety of software resources have been
developed which implement WGC analysis. The BSMART toolbox
(http://www.brain-smart.org) is a GUI-based package specifically
targeted toward theWGC analysis of neural time series data (Cui et al.,
2008). The GCCA toolbox (http://www.anilseth.com) is a MATLAB
(Natick, MA) based toolbox that provides a core set of WGC functions
applicable both to neuroimaging data and to time series from other
sources (Seth, 2009). Both packages are freely available under the
GNU software license and have been used successfully by multiple
groups in neuroimaging analysis (Saalmann et al., 2009; Hermer-
Vazquez, 2008; Sridharan et al., 2008; Gaillard et al., 2009; Chang et
al., 2008).

Conclusions

We have described Wiener–Granger Causality (WGC) analysis as a
robust formof TimeSeries Inference (TSI), havingan intuitive definition,
a straightforward description, and readily-available means of imple-
mentation. WGC, and related measures, are finding increasing utility in
the neuroscientific laboratory. For understanding the neural basis of
cognitive functions, such as the top-down cortical mechanism of visual
selective attention, WGC analysis is providing useful results that
complement those from stimulation techniques such as transcranial
magnetic stimulation and electrical microstimulation, and from lesion
techniques, such as reversible focal cryogenic blockade.
5 In fact, as noted above, the nonparametric implementation of WGC by Dhamala
et al. (2008) bypasses AR model estimation, and thus may also be considered ‘model
agnostic’.
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